
www.manaraa.com

RESEARCH ARTICLE

Validating movement corridors for African elephants
predicted from resistance-based landscape connectivity
models

Liudmila Osipova . Moses M. Okello . Steven J. Njumbi . Shadrack Ngene .

David Western . Matt W. Hayward . Niko Balkenhol

Received: 16 July 2018 / Accepted: 23 March 2019 / Published online: 3 April 2019

� Springer Nature B.V. 2019

Abstract

Context Resistance-based connectivity models are

widely used conservation tools for spatial prioritiza-

tion and corridor planning, but there are no generally

accepted methods and recommendations for validat-

ing whether these models accurately predict actual

movement routes. Hence, despite growing interest and

recognition of the importance of protecting landscape

connectivity, the practical utility of predictions

derived from connectivity models remains unclear.

Objectives The difficulties in validations are mainly

related to the unavailability of independent data and

lack of appropriate, easily applied statistical frame-

works. Here, we present a case study where two

independently collected datasets were used to validate

resistance-based landscape connectivity models and

movement corridors identified by these models.

Methods We used annual aerial counts to evaluate

the connectivity model, and a field survey to assess the

performance of predicted corridors. We applied these

two independent datasets to validate a previously

developed connectivity model for the African elephant

(Loxodonta africana) in the Borderland region

between Kenya and Tanzania.
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Results The results of this study confirm that the

resistance-based connectivity model is a valid

approach for predicting movement corridors for the

African elephant. We show that high connectivity

values are a strong predictor of the presence of large

numbers of the elephants across the years. The

probability of observing elephants increased with

increasing connectivity values, while accounting for

seasonality is an important factor for accurately

predicting movements from connectivity models.

Conclusion Movement corridors derived from resis-

tance-based connectivity models have a strong pre-

dictive power and can be successfully used in spatial

conservation prioritization.

Keywords African elephant � Conservation

planning � Resistance surface � Landscape

connectivity � Movement corridors � Step-selection

function

Introduction

Habitat fragmentation and species range shifts caused

by changing bioclimatic envelopes cast doubt on the

conservation benefits of static protected areas and

require new methods and concepts (Sanderson et al.

2006; Bennett et al. 2006; Doerr et al. 2010; Donald-

son et al. 2017). Preserving connectivity between

otherwise isolated habitat patches is essential for

conserving species, as it helps to maintain gene flow

and viable populations (Haddad and Tewksbury

2006). Reduced landscape connectivity can dramati-

cally affect many ecological processes, and therefore

connectivity planning is a valuable complementary

method to conventional conservation approaches

(Bennett et al. 2006).

The term ‘landscape connectivity’ relates to two

different concepts—structural and functional connec-

tivity (Crooks and Sanjayan 2006; Meiklejohn et al.

2009). Structural connectivity refers to the physical

connection of habitat patches via habitat-like corri-

dors. In contrast, functional connectivity describes the

response of organisms to landscape structure and the

patterns of ecological flows that result from these

individual responses (Brooks 2003). For example, a

stretch of forest that structurally connects two forest

patches may not be functional for a forest-dwelling

target species, if the species is unwilling or unable to

successfully travel through the corridor. Similarly, two

patches that are not physically connected by any

obvious corridor can still be functionally connected

from the perspective of the target species, if it can

successfully move through the matrix between the

patches. Hence, taking into consideration the func-

tional response of species to landscape structure is

becoming a crucial part of contemporary conservation

planning approaches (Bennett 2003; Baguette and Van

Dyck 2007).

Functionality is especially important for the delin-

eation of conservation corridors. While structural

corridors are considered non-dynamic land bridges

between suitable patches, functional corridors take

into account actual movement behaviours and disper-

sal abilities and hence are species-specific (Tischen-

dorf and Fahrig 2000; Baguette and Van Dyck 2007;

Goswami and Vasudev 2017). While identifying

structural corridors is straightforward, especially

when working within habitat-matrix-corridor land-

scapes (Forman 1995), delineating functional corri-

dors is more challenging, particularly when working in

gradient landscapes with spatially and temporally

varying matrix qualities. In such landscapes, models

of functional connectivity are often based on resis-

tance surfaces, which contain values that predict how

environmental conditions in any cell of the study

landscape will impede the willingness or ability of an

individual to move through that cell (Beier et al. 2008;

Zeller et al. 2012).

To parameterize resistance surfaces, empirical

genetic or animal movement data (GPS or VHF

telemetry datasets) should ideally be used (Zeller et al.

2012; LaPoint et al. 2013; Ziółkowska et al. 2016).

Step-selection functions (SSFs) are particularly suit-

able to estimate resistance surface values (Richard and

Armstrong 2010; Zeller et al. 2012; Thurfjell et al.

2014; Carvalho et al. 2015). This method allows

calculating the strength of species’ habitat selection

using steps reflecting actual animal movements (Zeller

et al. 2012, 2015; Keeley et al. 2016). SSFs are based

on real animal movement data and therefore reflect

animal knowledge of the environment, limit resource

selection by modelling realistic habitat availability

around each step, and allow us to predict landscape

resistance based on movements rather than habitat

suitability. SSFs have been successfully applied to a

variety of species and conservation problems (Forester
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et al. 2009; Roever et al. 2013; Thurfjell et al. 2014;

Signer et al. 2017).

Once resistance surfaces have been parameterized

based on empirical data, functional connectivity

models can be constructed by estimating a spatially-

explicit probability that any cell of the landscape will

be used by individuals that move from one specific

location to another. Thus, while underlying resistance

surfaces depict the local (i.e., cell-specific) cost to

individual movement across the entire study land-

scape, resulting connectivity models show how this

cost shapes movement among selected locations

within the landscape. The resulting connectivity

models can then also be used to predict and delineate

functional corridors, by identifying those areas that

have the highest, species-specific probability of being

used for movement between specific locations of

interest (e.g., protected or management areas).

Numerous studies have shown that using resis-

tance-based connectivity models for corridor planning

is effective and that they have significant potential in

conservation management (Gilbert-Norton et al. 2010;

Doerr et al. 2010; Abrahms et al. 2016). Nevertheless,

some concerns regarding the usefulness of landscape

corridors and their overall performance remain (Beier

and Noss 1998; Hodgson et al. 2009). Hence, it is

pivotal to validate whether resistance-based connec-

tivity models and the corridors predicted from them

are actually suitable for predicting occurrence and

movement of the target species.

Thurfjell et al. (2014) reviewed connectivity stud-

ies based on step-selection functions, and emphasized

that most of these studies neglected validation, and

concluded that more research is required to ensure

their successful realization in conservation practices.

The same conclusion has been made by Wade et al.

(2015) in the revision of using resistance-based

wildlife connectivity modelling across the United

States. Validating the model with independently

collected data is challenging as it always requires an

additional dataset and the methodological framework

for validation has not yet been standardized or applied

across a sufficient number of studies.

Indeed, few researchers have attempted to evaluate

the predictive performance of connectivity models.

These studies used species occurrence and GPS

datasets for validating either already existing ‘histor-

ical’ structural corridors (Clevenger et al. 2002;

Naidoo et al. 2018) or corridors designed via

individual-based modelling (Brooker et al. 1999).

Some researchers used genetic data to evaluate the

suitability of structural corridors in maintaining dis-

persal in fragmented landscapes (Mech and Hallett

2001) or validated structural landscape corridors with

functional connectivity models (Wang et al. 2008;

Mateo-Sánchez et al. 2015; Naidoo et al. 2018).

Functional connectivity models and corridors pre-

dicted from animal movement data have rarely been

evaluated (e.g. LaPoint et al. 2013).Potential datasets

for effective validation of functional connectivity and

corridors should ideally incorporate long-term obser-

vations of movements through the landscape. Animal

movements from GPS telemetry are highly suitable for

this and, when the sample size is large enough, the data

can be split into predictions and validation subsets

(Bond et al. 2017). A good alternative to telemetry

data are repeated population counts collected in the

same area where the predictions were made. Count

data allows derivation of the species’ spatial prefer-

ences and the identification of fidelity to certain areas,

especially if collected over a long period. Large

mammals in open areas are often counted during aerial

census surveys (Jolly 1969; Western et al. 1976). This

method provides high accuracy estimates in areas with

sparse vegetation because of good visibility of the

animals and high certainty in species recognition

(Jachmann 2002; Ndaimani et al. 2016). Hence, aerial

census surveys are widely used in animal population

studies (Prins and Douglas-Hamilton 1990; Stoner

et al. 2007; Singh and Milner-Gulland 2011; Okello

et al. 2016). As aerial survey data include a spatial

component, it has also been used to identify prominent

migration corridors (Pittiglio et al. 2012; Mose et al.

2013), and it is highly informative for validating

connectivity models.

In this study, we used an independent data set and

conducted a field survey to validate functional

connectivity models based on telemetry data for the

African elephant (Loxodonta africana). Specifically,

we built connectivity models for wet and dry seasons

based on SSFs-based resistance surfaces and predicted

the most probable movement corridors based on these

surfaces. Then, we used aerial count data to fit a

generalized linear mixed-effect model (GLMM) to

predict the probability of observing elephants in the

study area and test whether adding connectivity values

together with other environmental variables would

significantly improve the predictive performance of
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the regression model. Finally, we complemented this

approach with a fine-scale validation of predicted

corridors using an indirect animal sign (spoor/foot-

print) survey. The first validation approach showed

that including a connectivity estimate as a model

covariate significantly improved our ability to predict

the presence of elephants in our study area. The second

validation approach confirmed that the corridors

predicted from the seasonal connectivity models were

used more frequently than areas outside predicted

corridors.

Methods

Study area

The 8300 km2 study area is within the Greater

Amboseli Ecosystem in borderland between Kenya

and Tanzania (Fig. 1a). It is a semi-arid area prone to

the droughts and with irregular rainfall with short rains

from October to December, and a long rainy season

from March to May. The water sources are mostly

seasonal streams and minor rivers (Okello et al. 2016).

The area includes three large national parks (NPs) and

three community conservancies.

Resistance surface and connectivity modelling

We used a methodological framework fully described

in Osipova et al. (2018) for modelling seasonal

resistance maps with 250 m resolution. We calculated

resistance to movement surfaces using movement data

obtained from 12 individuals of African elephants

collared in the study area. The data were collected over

two consecutive years (2013–2014). We fitted SSFs

(Manly et al. 2002; Fortin et al. 2005; Johnson et al.

2006) to the movement data and 11 environmental

variables obtained from publicly available sources or

derived from remote sensing data and resampled to

250 m resolution (Supplement 1, Table S1). For

seasonal models, we fitted SSFs using the same set

of environmental variables, but with the different

NDVI layers (MODIS) for each month. For that, we

subset the movement data for each month and

extracted corresponding NDVI values for the move-

ment steps. Thereafter, the whole dataset was split into

wet and dry seasons. We used monthly rainfall data

obtained from the Tropical Rainfall Measuring

Mission (TRMM; TMPA/3B43 dataset) to define

wet and dry seasons. Months with rainfall less than

30 mm/month were assigned to the dry season.

The data were fitted using penalized conditional

logistic regression with least absolute shrinkage and

selection operator (LASSO) (Reid and Tibshirani

2014). This approach avoided autocorrelation and

biases in covariates, which is a general issue for

telemetry data (Beyer et al. 2010; Street et al. 2016).

The inverse of movement probabilities estimated with

SSFs were interpolated to the resistance surfaces

whose values range from 0 to 1, where lower values

represent a higher probability that an elephant will

move through this area (Zeller et al. 2012).

As the resistance surface is pixel-based (each pixel

represents one resistance value) and connectivity has a

route-specific nature (Cushman et al. 2009), we

applied least-cost paths (LCP) and circuit theory to

model connectivity and delineate the most likely

movement corridors (McRae et al. 2008; Carroll et al.

2012). LCP assume optimal movement of organisms

across the heterogeneous landscape (i.e., the resistance

surface) while circuit-theory assumes random move-

ment of individuals across the entire resistance surface

(McRae et al. 2008). The two approaches are

complementary, because LCP predict a single optimal

movement path between patches, while circuit theory

identifies alternative pathways and small areas that are

disproportionally important for connectivity (‘pinch-

points’). To combine the two approaches, the Link-

ageMapper toolkit (McRae and Kavanagh 2011)

provides an option to first delineate corridors based

on least-cost calculations (by combining and mosaick-

ing the cost-weighted distance grids for all pairwise

least-cost path calculations; see Supplement 4) and

then to restrict the circuit-theoretic calculations to

within these corridors. The result of these calculations

are predictions of the most likely movement paths

within the delineated corridors. Specifically, the

amount of current running through the least-cost

corridors reflects the likelihood of random walks

within the corridors and represent the amount of

connectivity between the patches (Shah and McRae

2008; Carroll et al. 2012). Cells with higher current

flows are predicted to be used more frequently by

organisms moving through the corridor network. This

combination of least-cost and circuit-theoretic con-

nectivity modeling has been successfully applied to

studies in movement ecology, landscape genetics and
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wildlife corridor design (e.g. Yumnam et al. 2014;

Bowman and Cordes 2015; Dutta et al. 2016; Jackson

et al. 2016; Hofman et al. 2018).

We defined patches as the core areas used by the

elephants in protected lands. We estimated these areas

as the 50% threshold of the kernel density calculated

from the elephants’ GPS fixes within the NPs and

community conservancies. The LinkageMapper anal-

ysis was performed in ArcGIS 10.5.1 (ESRI 2017) and

output rasters were further processed in the raster

package in R, version 2.7.15 (Hijmans et al. 2016).

Connectivity model validation methods

Connectivity model validation using aerial counts

We used the elephant counts collected by the

Amboseli Conservation Program (ACP) from aerial

surveys conducted between 2005 and 2016. The entire

study area of 8300 km2 was surveyed using a block

sampling method with a spatial grid with 332 grid cells

of 5 9 5 km size (Fig. 1a). Each grid cell was

systematically traversed by the aircraft using straight

flight lines at a nominal height of 91 m with counting

strips approximately 150–200 m wide (Norton-Grif-

fiths 1978). The aircraft crew included a pilot and two

observers (front and rear). The total number of

elephants estimated per grid cell was spatially

attributed to the coordinates of each cells’ center

Fig. 1 a Study area in the borderland between Kenya and

Tanzania with the spatial grid used for the elephants’ aerial

census; b connectivity model with the core areas estimated from

the elephant movement data using a 50% threshold of kernel

densities. Elephant density is estimated with annual aerial

census implemented by African Conservation Center in

2005–2016; c connectivity model estimated using a subset of

the elephant movement data (March) and validation research

quadrats. Quadrats t1–t4 are test quadrats placed in the area with

predicted high connectivity flows (probable movement corri-

dors); c1–2 are control quadrats placed in the area with low

predicted connectivity
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(see Western et al. 1976 for further details). The

surveys were repeated for wet and dry seasons in the

corresponding years (Fig. 1b).

We hypothesized that if the connectivity model

performed well and the grid cells with higher connec-

tivity values representing higher likelihood of ele-

phants’ movements between habitat patches, they

would be more frequently used by elephants compared

with a cell of similar characteristics with lower

connectivity values. Connectivity values extracted

from the surfaces represent cumulative electrical

currents calculated from electrical connectivity theory

and reflecting the likelihood of random walks between

each pair of patches (Shah and McRae 2008).

For testing this hypothesis, we regressed aerial

observations of elephants per grid cell with various

environmental variables and connectivity values. We

fitted a GLMM with a set of environmental covariates

and connectivity values per grid as fixed effects, and

the years of observations as a random effect using R

software version 3.4.3 (R Core Team 2017) and a

package lme4 version 1.1.15 (Bates et al. 2015). The

environmental variables were chosen based on eco-

logical relevance and tested for collinearity (Table 1).

The final set of environmental variables used for

model fitting had Pearson correlation coefficients less

than 0.6 (Supplement 2) and are presented in Table 1.

We also tested the count data for spatial autocorrela-

tion with a spline correlogram for each sampling year

to ensure that the sampling cells were spatially

independent.

To assess the effect of seasonality, we used two

resistance surfaces, and hence, two connectivity

models for wet and dry seasons. We excluded 12 grid

cells covering the core areas that were intensively used

by the elephants within the protected lands, which

assured that we were testing the connectivity model

for non-protected areas only (Fig. 1b). Animal count

data are often overdispersed due to zero-inflation (high

proportion of zeros in relation to the actual counts)

(Zuur et al. 2009). The recommended method of

dealing with zero-inflated datasets is using a mixture

model consisting of two parts. The binomial aspect

modelled the probability of obtaining zero values;

while the count aspect takes only values larger than

zero and fits the model assuming a Poisson distribution

(Zuur et al. 2009; O’Hara and Kotze 2010). Therefore,

we fitted a Poisson model with a log link function for

the count part, and logit link for the binary part (Bolker

et al. 2012). We used wet and dry seasons as

categorical interaction terms, assuming the effects of

connectivity may differ with seasonality.

We began by fitting the full model incorporating all

explanatory variables, and then tested the importance

of each variable by gradually excluding them from the

model (stepwise AIC selection procedure). We calcu-

lated joint AIC values (for zero-inflated and count

parts), and estimated goodness-of-fit of each model by

calculating R2, marginal R2
m (variance explained by

fixed terms) and conditional R2
c (variance explained by

fixed and random terms) (Nakagawa and Schielzeth

2013). We verified the top selected model fit by

plotting of Pearson residuals against fitted values and

each covariate, and the residuals were checked for

spatial autocorrelation (Zuur et al. 2010).

Predicted corridors validation using indirect field

counts

To evaluate if the predicted corridors were intensively

used by the elephants, we placed six 12 km2 research

quadrats in the study area. We applied a connectivity

model built only on a subset of the GPS movement and

NDVI layers from March 2015. We used the subset

because we aimed to refine the prediction to the

corresponding time of year when the field data were

collected (i.e., March 2017).

Four ‘test quadrats’ were positioned within the

predicted corridors (high connectivity values), and

two ‘control quadrats’ were placed outside of the

corridors (Fig. 1c). Each quadrat consisted of 4

parallel transects 3 km long with a 1 km gap between

them. To account for potential biases caused by human

disturbance, we placed two quadrats (one test and one

control) in an area of intensive agriculture (Fig. 1c).

We attempted to allocate the quadrats in areas with

similar environmental conditions to ensure that there

were no physical or ecological barriers for the

elephants to traverse while travelling from one

protected area to another. We assumed that if the

predicted higher connectivity values were ‘working’

corridors for the elephants, then elephant track density

and abundance estimates would be higher in the test

quadrats.

We collected and georeferenced all elephant tracks

from the walking transects (overall length of the

survey transects was 12 km within each quadrat and
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72 km in total). The survey area included mainly open

savannah with a sparse vegetation or local-scale

agriculture (Table 2). Elephant tracks are highly

visible in this flat area and easy to identify; they are

only washed away during heavy rain. Therefore,

collecting the data over a short time period at the end

of the dry season assured counting most crossings

from at least the last 2 months (no rain had fallen

within the study area in that time). The data were

collected with the help of an experienced tracker who

identified footprints. Due to the large size of elephant

footprints and their persistence over time, we were

able to estimate an approximate age of crossings

deductively by the level of track disturbance

(1–2 days ago; 3–7 days; 7–14 days; more than

2 weeks ago). Stander et al. (1997) showed that spoor

tracking using local knowledge had a 98% accuracy.

Using local knowledge for animal tracking has been

successfully applied in numerous studies on a suite of

species, including African elephants (Southgate et al.

2005; Norris et al. 2008; Southgate and Moseby 2008;

Songhurst et al. 2016).

We estimated track densities per quadrat by calcu-

lating the total number of tracks recorded along the

transects (groups of individuals travelling together

were counted as one) and divided by the quadrat’s

area. We also calculated the total number of individ-

uals that crossed the research quadrat within the last

2 months. The higher the numbers, the more inten-

sively the elephants moved through the research plot

in the last 2 months.

As the track density is a naı̈ve estimate (i.e. the sum

of the plot counts), we also calculated the elephant

abundance value for each plot using the Formozov–

Malyshev–Pereleshin formula (Stephens et al. 2006):

D ¼ p
2

x

SM̂

where D-animal density (abundance), x-number of

daily tracks crossing the survey transect; S-survey

transect length; and M̂-mean daily travel distance of an

animal.

This method estimates animal abundance based on

the probabilistic relationship between the number of

crossings of a transect of given length and an animal’s

daily travel distance. The formula has been tested with

simulations and empirical datasets and showed high

performance for the abundance estimate (Stephens

et al. 2006; Keeping and Pelletier 2014). For fitting

data to the formula, we used only a subset of fresh

(1–2 days old) elephant tracks crossing transects. The

average travel distance was calculated using the GPS

telemetry for the corresponding month (March). We

applied non-parametric bootstrap sampling for the

standard error calculation (1000 iterations).

Results

Connectivity model evaluation using aerial counts

A multicollinearity test revealed correlations between

land cover variables (proportion of grassland,

Table 1 Stepwise models’ selection goodness-of-fit comparisons for zero-inflated GLMM fitted to the elephants counts data

Dropped fixed terms AICj log lik Count part Binary part

R2
m R2

c R2
m R2

c

None (full model) 3289.8 - 1434.0 0.31 0.44 0.18 0.18

Connectivity 9 season 4471.9 - 1815.5 0.17 0.31 0.08 0.08

Season (interaction term) 4055.5 - 1818.9 0.21 0.33 0 0

All but connectivity 9 season 4146.8 - 1866.3 0.18 0.23 0 0

Slope 4073.6 - 1827.4 0.2 0.25 0.17 0.17

NDVI 3432.7 - 1507.2 0.29 0.4 0.003 0.01

Grasslands 3381.0 - 1480.9 0.29 0.45 0.12 0.12

Joint Akaike information criterion for the count and binary fitted models (AICj), log likelihood (log lik), variance explained by fixed term only

(marginal variance R2
m) and variance explained by fixed and random terms (conditional variance R2

c)

Full model: Number of elephants * Slope ? NDVI ? Proportion of Grasslands ? Connectivity ? (Connectivity 9 Seasons) ? (1|year)
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bushland and woodland), so we retained only one land

cover variable (proportion of grassland) in the model.

The pairwise Pearson correlation coefficients were

less than 0.6 for the final set of explanatory variables

(Supplement 2). Plotting Pearson residuals against

original and fitted values, neither the explanatory

variables or the spline correlogram indicated any

problems with models fit (Supplement 3) (Zuur and

Ieno 2016).

Correlograms of the count data for most years

revealed an absence of or only small spatial correlation

splines (less than 0.5) at short distances. Only the 2012

dataset had a spline with a correlation larger than 0.5,

but only at a distance of * 1 km, which then rapidly

decreased (Supplement 3). Considering the size of the

grid cells (5 9 5 km) and results of spatial autocor-

relation plots, we concluded that the dataset was not

spatially correlated.

We fitted models with all explanatory variables

through repeated evaluation with unique variables and

interaction term recombinations. Connectivity vari-

ables with seasonality as the interaction term were

retained in the top 5 selected models. The model with

the highest joint AIC criteria included connectivity

and season as interaction terms and explained 44% of

the variance (AICj = 3289.83, R2
c = 0.44). The model

including only connectivity as an explanatory variable

itself explained 23% of the data’s variance (AICj-

= 4146.83, R2
c = 0.23). Stepwise excluding environ-

mental variables from the model showed that the

model fitting was most negatively affected after

excluding connectivity from the set of fixed terms

(AICj = 4471.94, R2
c = 0.31). The second and third

most influential covariates were slope and seasonality

as an interaction term (AICj = 4073.61, R2
c = 0.25 for

slope; AICj = 4055.54, R2
c = 0.33 for seasonality)

(Table 1). The full model predicted decreasing prob-

ability of zero observation and increasing probability

of observing higher elephants number with higher

connectivity values (Fig. 2).

Predicted corridors validation using indirect field

counts

The research quadrats were placed in the areas with

comparably low slope and moderate productivity

(NDVI) values (Table 2). The quadrats placed in the

area with high human disturbance included at least

24% of small-scale agriculture for the test quadrat, and

46% for the control quadrat. The proportion of higher

Table 2 Environmental variables, tracks densities and abundance values estimated in the research quadrats (t1–4 are test quadrats

placed in the predicted corridors; c1–2 are control quadrats placed outside of the corridors)

Low human disturbance High human disturbance

No. on map (Fig. 1c) c1 t1 t2 t3 c2 t4

Dominant

vegetation type

open lands/

sparse bushland

sparse bushland/

open lands

sparse

bushland

sparse

bushland

sparse

bushland

sparse

bushland

Mean slope 6.16 4.92 5.53 4.91 5.38 5.61

Mean NDVI 0.16 0.19 0.23 0.27 0.24 0.22

Proportion of

agriculture

0.00 0.00 0.00 0.01 0.24 0.46

High connectivity

values

0.006 0.52 0.99 0.82 0.006 0.92

Elephants density estimates

Number of individual tracks 15 126 73 108 11 76

Tracks density* 0.5 3.7 1.7 4.25 0.5 1.3

Abundance

(mean ± S.E.)**

0.04 ± 0.0006 0.75 ± 0.002 0.32 ± 0.001 N/A 0.02 ± 0.000 0.59 ± 0.004

*Individuals moving in a group were counted as 1 set of tracks

**Formozov–Malyshev–Pereleshin estimate with bootstrapping
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connectivity values (the values higher than 0.2) varies

from 50 to 99% for test quadrats, and only 0.06% in

both control quadrats (Table 2).

For the Formozov–Malyshev–Pereleshin formula,

we used the overall length of the survey transect per

quadrat (12 km) and an average daily distance

estimated using the telemetry data (5.8 km/day). The

range of track densities and abundance values for

control quadrats are prominently lower compared to

the test quadrats (0.5 vs 1.3–4.25 for tracks density;

0.02–0.05 vs 0.32–0.75 for abundance, Table 2). We

could not estimate abundance for the quadrat t3

because all counts in this quadrat were older than

2 days, while the formula requires input on only the

last day’s tracks. Despite the absence of tracks within

the few days prior to the survey, this quadrat actually

included the highest track density recorded for the

previous 2 months (4.25 tracks/km2, Table 2).

The highest track density/abundance ratio was for

the corridor connecting Amboseli with Enduimet

(quadrat t1, Fig. 1c); and the lowest values were for

the corridor between Amboseli and Elerai (quadrat t3,

Fig. 1c). The quadrat t4 in the high human disturbance

area had track density values as high as the quadrats in

Fig. 2 a Number of

elephants (non-zero counts)

estimated from the aerial

census survey (2005–2016)

plotted against the

proportion of high

connectivity values ([ 0.2)

predicted with a resistance-

based SSFs connectivity

model; b fitted curve for the

full zero-inflated GLMM

model. The y-axis represents

expected number of the

elephants, and the x-axis

shows the proportion of high

connectivity values; c fitted

curve for the binary part of

the model. The y-axis

represents probability of

observation of zero terms

(no elephants in a grid cell),

and the y-cell shows the

proportion of high

connectivity values
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the non-disturbed area (e.g. quadrat t2 has a track

density 1.7 vs 1.3 for the quadrat t4).

Discussion

Our study demonstrates that connectivity values derived

from a landscape resistance model are the most signif-

icant predictor of elephant abundance based on a linear

mixed effects model derived from aerial census data and

environmental covariates and connectivity. Additionally,

we implemented on-ground surveys inside and outside of

the predicted corridors and calculated elephant density

differences between research sites to confirm that the

resistance-based connectivity model built on SSFs and

circuit theory accurately predicted both at the larger

(higher connectivity values predicts higher number of

observed animals across the years) and smaller scale

(predicted corridors are more intensively used by the

focal species).

Repeatable aerial census data is one of the rare

examples of an independent dataset that can be used for

validation of a connectivity model’s predictive power.

Systematic block sampling from the air is a well-known

and commonly used method for large mammal popula-

tion trend surveys (Western et al. 1976; Jachmann 2002;

Dunham 2011; Ngene et al. 2011). In contrast to the

species occurrence data, where the data points represent

presence or non-detection of the individual on the

ground, aerial counts take ‘snapshots’ of the ground and

estimate the number of individuals and their spatial

affiliation over a long period of time. These data

characterize the parts of the landscape that are more

intensively used for feeding or movements by the

animals, and therefore have the potential for capturing

regularly used corridors (Pittiglio et al. 2012; Mose et al.

2013). One probable data-related issue would be the high

possibility of registering intensively used habitat patches

alone with the corridors. To ensure that we are testing

movement routes rather than resting/feeding patches, we

excluded grid cells corresponding to the intensively used

protected lands estimated from the GPS movement data

using kernel density (Osipova et al. 2018).

The results of the zero-inflated GLMM model

confirmed our hypothesis that connectivity routes are a

significant predictor of the presence of elephants in a

corresponding spatial grid cells. The goodness-of-fit

of the model was most negatively affected when the

connectivity predictor was excluded. At the same

time, removing all variables except connectivity leads

to improved model fit compared to excluding just

connectivity as a predictor. Connectivity with season

as an interaction term alone explained 23% of data

variance (Table 1). The seasonality influence on

model performance is third after the connectivity

and slope variables. This leads us to the conclusion

that the resistance-based connectivity model is a

genuine predictor of elephant presence in the land-

scape, and adding seasonality to the model signifi-

cantly improves the predictions.

The predictions from the full zero-inflated model

fitting further confirmed the hypothesis that higher

connectivity values predicted larger elephant num-

bers. The shape of the prediction curve captures the

patterns observed in the actual data (Fig. 2). When the

proportion of higher connectivity values is less than

50% per grid cell, the number of observed elephants

remains relatively constant. However, the predicted

elephant numbers grew exponentially when the pro-

portion of higher connectivity values reached[ 75%

per grid cell (Fig. 2). Predictions from the binary

section of the model showed that the probability of

zero counts (no elephants in a cell) was expected to be

high in the data, but the probability decreased with

increasing landscape connectivity. Thus, results from

the model’s predictions are in accordance with our

initial hypothesis that the probability of observing

large numbers of elephants is higher in areas with

higher connectivity potential.

The track counts showed that quadrats in the

predicted corridors were crossed by elephants more

frequently compared to those off the corridors. Track

densities were two to four times higher in the corridors

than off them; and the number of individual tracks

varied from 73 to 126 in the corridors, versus only

11–15 in the control quadrats. The corridor quadrats

placed in the pristine lands adjacent to the large

protected areas had the highest movement intensity

values (the corridor between Amboseli National Park

and Enduimet; the corridor between Tsavo West NP

and Chyulu Hills NP). At the same time, the test

quadrats placed in the area occupied by small-scale

agriculture (46% of the area) were used by elephants at

similar rates to the quadrats with no human activity

presence. Conversely, the control quadrat with 24% of

the agriculture area had only 11 individual crossings

(versus 76 individuals in the test quadrat). As the

environmental conditions in the quadrats were similar,
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we assumed that elephants use the corridors for

movement irrespective of human presence. This

conclusion corresponds to previous studies that

showed that small-scale agriculture attracts elephants

for crop raiding, and thereby regularly causes human–

wildlife conflict (Graham et al. 2010). The study area

has had a long history of human–elephant conflict

(Okello 2005; Kioko et al. 2006), and the accurate

predictions of movement corridors across such an area

with rapidly developing agriculture might be a good

predictor of an areas’ potential for conflict.

Future studies should expand our validation

approach using different datasets and statistical meth-

ods. For the field count methods extension, it would be

beneficial to use more sample quadrats across the

study area and possibly implement repeatable counts

within and between seasons. Long-term monitoring of

the same predicted corridors would provide valuable

information about the prediction accuracy and deliver

more data for sensitivity analysis. We found that track

density counts were the most convenient on-ground

sampling methods for African elephants in savannah

biomes. Their tracks are highly visible, easy to identify

and stay undisturbed for a long period of time.

However, other sampling techniques can be consid-

ered for more covered and forested habitats, including

distance sampling method (Buckland et al. 2001;

Buckland 2004) or camera trapping (Rowcliffe et al.

2008; LaPoint et al. 2013; Burton et al. 2015).

Overall, the results of this research support the

hypothesis that resistance-based connectivity mod-

elling is a valuable working tool for predicting

movement corridors and has high potential for species

connectivity conservation and landscape planning. We

demonstrated that the resistance-based connectivity

model has a strong predictive power and can be helpful

for delineating movement corridors. Additionally, we

showed the importance of accounting for seasonality

in connectivity studies and confirmed that predicted

corridors are intensively used for movement by the

elephants.
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Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear

mixed-effects models using lme4. J Stat Softw 67:1–48

Beier P, Majka DR, Spencer WD (2008) Forks in the road:

choices in procedures for designing wildland linkages.

Conserv Biol 22:836–851

Beier P, Noss RF (1998) Do habitat corridors provide connec-

tivity? Conserv Biol 12:1241–1252

Bennett AF (2003) Linkages in the landscape: the role of corridors

and connectivity in wildlife conservation. IUCN report

Bennett A, Crooks K, Sanjayan M (2006) The future of con-

nectivity conservation. In: Crooks KR, Sanjayan M (eds)

Connectivity conservation. Cambridge University Press,

Cambridge, pp 676–694

Beyer HL, Haydon DT, Morales JM, Frair JL, Hebblewhite M,

Mitchell M, Matthiopoulos J (2010) The interpretation of

habitat preference metrics under use–availability designs.

Philos Trans R Soc Lond B Biol Sci 365:2245–2254

Bolker B, Brooks M, Gardner B, Lennert C, Minami M (2012)

Owls example: a zero-inflated, generalized linear mixed

model for count data. Departments of Mathematics &

Statistics and Biology, McMaster University, Hamilton

Bond ML, Bradley CM, Kiffner C, Morrison TA, Lee DE (2017) A

multi-method approach to delineate and validate migratory

corridors. Landscape Ecol. https://doi.org/10.1007/s10980-

017-0537-4

Bowman J, Cordes C (2015) Landscape connectivity in the

Great Lakes Basin. Wildlife Research and Monitoring

Section Ministry of Natural Resources and Forestry,

Peterborough

Brooker L, Brooker M, Cale P (1999) Animal dispersal in

fragmented habitat: measuring habitat connectivity, corri-

dor use, and dispersal mortality. Conserv Ecol 3:4

Brooks CP (2003) A scalar analysis of landscape connectivity.

Oikos 102:433–439

Buckland ST (2004) Advanced distance sampling. Oxford

University Press, Oxford

Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers

DL, Thomas L (2001) Introduction to distance sampling

estimating abundance of biological populations. Oxford

University Press

Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher

JT, Bayne E, Boutin S (2015) Wildlife camera trapping: a

review and recommendations for linking surveys to eco-

logical processes. J Appl Ecol 52:675–685

Carroll C, McRae B, Brookes A (2012) Use of linkage mapping

and centrality analysis across habitat gradients to conserve

123

Landscape Ecol (2019) 34:865–878 875

https://doi.org/10.1111/1365-2664.12714
https://doi.org/10.1111/1365-2664.12714
https://doi.org/10.1007/s10980-017-0537-4
https://doi.org/10.1007/s10980-017-0537-4


www.manaraa.com

connectivity of gray wolf populations in western North

America. Conserv Biol 26:78–87

Carvalho F, Carvalho R, Mira A, Beja P (2015) Assessing

landscape functional connectivity in a forest carnivore

using path selection functions. Landscape Ecol

31:1021–1036

Clevenger Wierzchowski Jack, Bryan Chruszcz, Kari Gunson

(2002) GIS-generated, expert-based models for identifying

wildlife habitat linkages and planning mitigation passages.

Conserv Biol 16:503–514

Crooks KR, Sanjayan M (2006) Connectivity conservation.

Cambridge University Press, Cambridge

Cushman SA, McKelvey KS, Schwartz MK (2009) Use of

empirically derived source-destination models to map

regional conservation corridors. Conserv Biol 23:368–376

Doerr VAJ, Barrett T, Doerr ED et al (2010) Connectivity, dis-

persal behaviour and conservation under climate change: a

response to Hodgson et al. J Appl Ecol 48:143–147

Donaldson L, Wilson RJ, Maclean IMD (2017) Old concepts,

new challenges: adapting landscape-scale conservation to

the twenty-first century. Biodivers Conserv 26:527–552

Dunham KM (2011) Trends in populations of elephant and other

large herbivores in Gonarezhou National Park, Zimbabwe, as

revealed by sample aerial surveys. Afr J Ecol 50:476–488

Dutta T, Sharma S, McRae BH, Roy PS, DeFries R (2016)

Connecting the dots: mapping habitat connectivity for

tigers in central India. Reg Environ Change 16:53–67

Forester JD, Im HK, Rathouz PJ (2009) Accounting for animal

movement in estimation of resource selection functions:

sampling and data analysis. Ecology 90:3554–3565

Forman RT (1995) Some general principles of landscape and

regional ecology. Landscape Ecol 10:133–142

Fortin D, Morales JM, Boyce MS (2005) Elk winter foraging at

fine scale in Yellowstone National Park. Oecologia

145:334–342

Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A

meta-analytic review of corridor effectiveness. Conserv

Biol 24:660–668

Goswami VR, Vasudev D (2017) Triage of conservation needs:

the juxtaposition of conflict mitigation and connectivity

considerations in heterogeneous, human-dominated land-

scapes. Front Ecol Evol. https://doi.org/10.3389/fevo.

2016.00144

Graham MD, Notter B, Adams WM, Lee PC, Ochieng TN

(2010) Patterns of crop-raiding by elephants, Loxodonta

africana, in Laikipia, Kenya, and the management of

human–elephant conflict. Syst Biodivers 8:435–445

Haddad NM, Tewksbury JJ (2006) Impacts of corridors on

populations and communities. Cambridge University

Press, Cambridge, pp 390–415

Hijmans RJ, van Etten J, Cheng J, Mattiuzzi M, Sumner M,

Greenberg JA, Lamigueiro OP, Bevan A, Racine EB,

Shortridge A, Hijmans MR (2016) Package ‘raster’. R

package. ftp://slartibardfast.gtlib.gatech.edu/pub/CRAN/

web/packages/raster/raster.pdf. Accessed 17 Feb 2017

Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009)

Climate change, connectivity and conservation decision

making: back to basics. J Appl Ecol 46:964–969

Hofman MPG, Hayward MW, Kelly MJ, Balkenhol N (2018)

Enhancing conservation network design with graph-theory

and a measure of protected area effectiveness: refining

wildlife corridors in Belize, Central America. Landsc

Urban Plan 178:51–59

Jachmann H (2002) Comparison of aerial counts with ground

counts for large African herbivores. J Appl Ecol

39:841–852

Jackson CR, Marnewick K, Lindsey PA, Røskaft E, Robertson

MP (2016) Evaluating habitat connectivity methodologies:

a case study with endangered African wild dogs in South

Africa. Landscape Ecol 31:1433–1447

Johnson CJ, Nielsen SE, Merrill EH, McDonald TL, Boyce MS

(2006) Resource selection functions based on use-avail-

ability data: theoretical motivation and evaluation meth-

ods. J Wildl Manag 70:347–357

Jolly GM (1969) Sampling methods for aerial censuses of

wildlife populations. East Afr Agric For J 34:46–49

Keeley ATH, Beier P, Gagnon JW (2016) Estimating landscape

resistance from habitat suitability: effects of data source

and nonlinearities. Landscape Ecol 31:2151–2162

Keeping D, Pelletier R (2014) Animal density and track counts:

understanding the nature of observations based on animal

movements. PLoS ONE 9:e96598

Kioko J, Okello M, Muruthi P (2006) Elephant numbers and

distribution in the Tsavo-Amboseli ecosystem, south-

western Kenya. Pachyderm 41:53–60

LaPoint S, Gallery P, Wikelski M, Kays R (2013) Animal

behavior, cost-based corridor models, and real corridors.

Landscape Ecol 28:1615–1630

Manly BFJ, McDonald LL, Thomas DL, McDonald TL,

Erickson WP (2002) Resource selection by animals: sta-

tistical analysis and design for field studies, 2nd edn.

Kluwer, Nordrecht

Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Dom-
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Ziółkowska E, Ostapowicz K, Radeloff VC, Kuemmerle T,

Sergiel A, Zwijacz-Kozica T, Zięba F, Śmietana W, Selva
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